Skip to main content

Motoneuron Disease: Clinical

  • Chapter
  • First Online:
Neurodegenerative Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 15))

Abstract

ALS is a neurodegenerative disease in which the primary symptoms result in progressive neuromuscular weakness. Recent studies have highlighted that there is significant heterogeneity with regard to anatomical and temporal disease progression. Importantly, more recent advances in genetics have revealed new causative genes to the disease. New efforts have focused on the development of biomarkers that could aid in diagnosis, prognosis, and serve as pharmacodynamics markers. Although traditional pharmaceuticals continue to undergo trials for ALS, new therapeutic strategies including stem cell transplantation studies, gene therapies, and antisense therapies targeting some of the familial forms of ALS are gaining momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALS:

Amyotrophic lateral sclerosis

ALSFRS-R:

ALS functional rating scale-revised

ASO:

Antisense oligonucleotides

BMI:

Body mass index

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CT:

Computed tomography

DTI:

Diffusion tensor imaging

FDA:

Food and Drug Administration

FTD:

Frontotemporal dementia

FVC:

Forced vital capacity

GABA:

Gamma amino butyric acid

GRP:

Glial-restricted progenitor

IPSC:

Induced pluripotent stem cells

LMN:

Lower motor neuron

MRI:

Magnetic resonance imaging

MSC:

Mesenchymal stem cells

NF-H:

Neurofilament-heavy

NIV:

Noninvasive ventilation

PEG:

Percutaneous endoscopic gastrostomy

PLS:

Primary lateral sclerosis

PMA:

Progressive muscular atrophy

SOD1:

Superoxide dismutase 1

UMN:

Upper motor neuron

References

  1. Mehta P et al (2014) Prevalence of amyotrophic lateral sclerosis–United States, 2010–2011. MMWR Surveill Summ 63(Suppl 7):1–14

    Google Scholar 

  2. Logroscino G et al (2010) Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry 81:385–390

    Article  PubMed  Google Scholar 

  3. Chio A et al (2009) Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler 10:310–323

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brooks BR (1994) El Escorial world federation of neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on motor neuron diseases/amyotrophic lateral sclerosis of the world federation of neurology research group on neuromuscular diseases and the El Escorial “clinical limits of amyotrophic lateral sclerosis” workshop contributors. J Neurol Sci 124(Suppl):96–107

    Article  PubMed  Google Scholar 

  5. Brooks BR et al (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  CAS  PubMed  Google Scholar 

  6. Ludolph A et al (2015) A revision of the El Escorial criteria–2015. Amyotroph Lateral Scler Frontotemporal Degener 16(5–6):291–292

    Article  PubMed  Google Scholar 

  7. Ravits J et al (2013) Deciphering amyotrophic lateral sclerosis: what phenotype, neuropathology and genetics are telling us about pathogenesis. Amyotroph Lateral Scler Frontotemporal Degener 14(Suppl 1):5–18

    Article  PubMed  PubMed Central  Google Scholar 

  8. Katz JS et al (1999) Brachial amyotrophic diplegia: a slowly progressive motor neuron disorder. Neurology 53:1071–1076

    Article  CAS  PubMed  Google Scholar 

  9. Wijesekera LC et al (2009) Natural history and clinical features of the flail arm and flail leg ALS variants. Neurology 72:1087–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chio A et al (2011) Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry 82:740–746

    Article  PubMed  Google Scholar 

  11. Shoesmith CL et al (2007) Prognosis of amyotrophic lateral sclerosis with respiratory onset. J Neurol Neurosurg Psychiatry 78:629–631

    Article  PubMed  Google Scholar 

  12. Kim WK et al (2009) Study of 962 patients indicates progressive muscular atrophy is a form of ALS. Neurology 73:1686–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Visser J et al (2007) Disease course and prognostic factors of progressive muscular atrophy. Arch Neurol 64:522–528

    Article  PubMed  Google Scholar 

  14. Gordon PH et al (2006) The natural history of primary lateral sclerosis. Neurology 66:647–653

    Article  CAS  PubMed  Google Scholar 

  15. Singer MA et al (2007) Primary lateral sclerosis. Muscle Nerve 35:291–302

    Article  CAS  PubMed  Google Scholar 

  16. Tartaglia MC et al (2007) Differentiation between primary lateral sclerosis and amyotrophic lateral sclerosis: examination of symptoms and signs at disease onset and during follow-up. Arch Neurol 64:232–236

    Article  PubMed  Google Scholar 

  17. Massman PJ et al (1996) Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 61:450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ringholz GM et al (2005) Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65:586–590

    Article  CAS  PubMed  Google Scholar 

  19. Lomen-Hoerth C et al (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59:1077–1079

    Article  PubMed  Google Scholar 

  20. Ng AS et al (2015) Frontotemporal dementia: a bridge between dementia and neuromuscular disease. Ann N Y Acad Sci 1338:71–93

    Article  CAS  PubMed  Google Scholar 

  21. DeJesus-Hernandez M et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Renton AE et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cooper-Knock J et al (2012) Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. Brain 135:751–764

    Article  PubMed  PubMed Central  Google Scholar 

  24. Millecamps S et al (2012) Phenotype difference between ALS patients with expanded repeats in C9ORF72 and patients with mutations in other ALS-related genes. J Med Genet 49:258–263

    Article  CAS  PubMed  Google Scholar 

  25. Bensimon G et al (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole study group [see comments]. N Engl J Med 330:585–591

    Article  CAS  PubMed  Google Scholar 

  26. Lacomblez L et al (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet 347:1425–1431

    Article  CAS  PubMed  Google Scholar 

  27. Korner S et al (2013) Weight loss, dysphagia and supplement intake in patients with amyotrophic lateral sclerosis (ALS): impact on quality of life and therapeutic options. BMC Neurol 13:84

    Article  PubMed  PubMed Central  Google Scholar 

  28. Desport JC et al (2005) Hypermetabolism in ALS: correlations with clinical and paraclinical parameters. Neurodegener Dis 2:202–207

    Article  PubMed  Google Scholar 

  29. Desport JC et al (1999) Nutritional status is a prognostic factor for survival in ALS patients. Neurology 53:1059–1063

    Article  CAS  PubMed  Google Scholar 

  30. Paganoni S et al (2011) Body mass index, not dyslipidemia, is an independent predictor of survival in amyotrophic lateral sclerosis. Muscle Nerve 44:20–24

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dupuis L et al (2011) Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10:75–82

    Article  CAS  PubMed  Google Scholar 

  32. Reich-Slotky R et al (2013) Body mass index (BMI) as predictor of ALSFRS-R score decline in ALS patients. Amyotroph Lateral Scler Frontotemporal Degener 14:212–216

    Article  PubMed  Google Scholar 

  33. O’Reilly EJ et al (2013) Premorbid body mass index and risk of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 14:205–211

    Article  PubMed  Google Scholar 

  34. Gallo V et al (2013) Prediagnostic body fat and risk of death from amyotrophic lateral sclerosis: the EPIC cohort. Neurology 80:829–838

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ngo ST et al (2014) Body mass index and dietary intervention: implications for prognosis of amyotrophic lateral sclerosis. J Neurol Sci 340:5–12

    Article  CAS  PubMed  Google Scholar 

  36. Paganoni S et al (2015) Reply: pre-morbid type 2 diabetes mellitus as a prognostic factor in ALS. Muscle Nerve 52:4. doi:10.1002/mus.24760

    Article  Google Scholar 

  37. Chio A et al (1999) Safety and factors related to survival after percutaneous endoscopic gastrostomy in ALS. ALS percutaneous endoscopic gastrostomy study group. Neurology 53:1123–1125

    Article  CAS  PubMed  Google Scholar 

  38. Spataro R et al (2011) Percutaneous endoscopic gastrostomy in amyotrophic lateral sclerosis: effect on survival. J Neurol Sci 304:44–48

    Article  PubMed  Google Scholar 

  39. Langmore SE et al (2006) Enteral tube feeding for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev:CD004030

    Google Scholar 

  40. Miller RG et al (2009) Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: drug, nutritional, and respiratory therapies (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 73:1218–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Corcia P et al (2008) Causes of death in a post-mortem series of ALS patients. Amyotroph Lateral Scler 9:59–62

    Article  PubMed  Google Scholar 

  42. Bergofsky EH (1979) Respiratory failure in disorders of the thoracic cage. Am Rev Respir Dis 119:643–669

    CAS  PubMed  Google Scholar 

  43. Kleopa KA et al (1999) Bipap improves survival and rate of pulmonary function decline in patients with ALS. J Neurol Sci 164:82–88

    Article  CAS  PubMed  Google Scholar 

  44. Carratu P et al (2009) Early treatment with noninvasive positive pressure ventilation prolongs survival in amyotrophic lateral sclerosis patients with nocturnal respiratory insufficiency. Orphanet J Rare Dis 4:10

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bourke SC et al (2003) Noninvasive ventilation in ALS: indications and effect on quality of life. Neurology 61:171–177

    Article  CAS  PubMed  Google Scholar 

  46. Bourke SC et al (2006) Effects of non-invasive ventilation on survival and quality of life in patients with amyotrophic lateral sclerosis: a randomised controlled trial. Lancet Neurol 5:140–147

    Article  PubMed  Google Scholar 

  47. Pinto A et al (2003) Nocturnal pulse oximetry: a new approach to establish the appropriate time for non-invasive ventilation in ALS patients. Amyotroph Lateral Scler Other Motor Neuron Disord 4:31–35

    Article  PubMed  Google Scholar 

  48. Miller RG et al (1999) Practice parameter: the care of the patient with amyotrophic lateral sclerosis (an evidence-based review). Muscle Nerve 22:1104–1118

    Article  CAS  PubMed  Google Scholar 

  49. Hayashi H, Oppenheimer EA (2003) ALS patients on TPPV: totally locked-in state, neurologic findings and ethical implications. Neurology 61:135–137

    Article  PubMed  Google Scholar 

  50. Rabkin JG et al (2006) Predictors and course of elective long-term mechanical ventilation: a prospective study of ALS patients. Amyotroph Lateral Scler 7:86–95

    Article  PubMed  Google Scholar 

  51. Moss AH et al (1993) Home ventilation for amyotrophic lateral sclerosis patients: outcomes, costs, and patient, family, and physician attitudes. Neurology 43:438–443

    Article  CAS  PubMed  Google Scholar 

  52. Borasio CD et al (1998) Mechanical ventilation in amyotrophic lateral sclerosis: a cross-cultural perspective. J Neurol 245:S7–S12

    Article  PubMed  Google Scholar 

  53. Onders RP et al (2009) Amyotrophic lateral sclerosis: the Midwestern surgical experience with the diaphragm pacing stimulation system shows that general anesthesia can be safely performed. Am J Surg 197:386–390

    Article  PubMed  Google Scholar 

  54. DiPALS Writing Committee; DiPALS Study Group Collaborators et al (2015) Safety and efficacy of diaphragm pacing in patients with respiratory insufficiency due to amyotrophic lateral sclerosis (DiPALS): a multicentre, open-label, randomised controlled trial. Lancet Neurol 14:883–892

    Article  Google Scholar 

  55. Drory VE et al (2001) The value of muscle exercise in patients with amyotrophic lateral sclerosis. J Neurol Sci 191:133–137

    Article  CAS  PubMed  Google Scholar 

  56. Bello-Haas VD et al (2007) A randomized controlled trial of resistance exercise in individuals with ALS. Neurology 68:2003–2007

    Article  PubMed  Google Scholar 

  57. Ganesalingam J et al (2011) Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. J Neurochem 117:528–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tortelli R et al (2012) Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol 19:1561–1567

    Article  CAS  PubMed  Google Scholar 

  59. Ganesalingam J et al (2013) pNfH is a promising biomarker for ALS. Amyotroph Lateral Scler Frontotemporal Degener 14:146–149

    Article  CAS  PubMed  Google Scholar 

  60. Lehnert S et al (2014) Multicentre quality control evaluation of different biomarker candidates for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 15:344–350

    Article  PubMed  Google Scholar 

  61. Boylan K et al (2009) Immunoreactivity of the phosphorylated axonal neurofilament H subunit (pNF-H) in blood of ALS model rodents and ALS patients: evaluation of blood pNF-H as a potential ALS biomarker. J Neurochem 111:1182–1191

    Article  CAS  PubMed  Google Scholar 

  62. Bakkar N et al (2015) Use of biomarkers in ALS drug development and clinical trials. Brain Res 1607:94–107

    Article  CAS  PubMed  Google Scholar 

  63. Goodin DS et al (1988) Magnetic resonance imaging in amyotrophic lateral sclerosis. Ann Neurol 23:418–420

    Article  CAS  PubMed  Google Scholar 

  64. Mezzapesa DM et al (2007) Whole-brain and regional brain atrophy in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 28:255–259

    Article  CAS  PubMed  Google Scholar 

  65. Turner MR, Verstraete E (2015) What does imaging reveal about the pathology of amyotrophic lateral sclerosis? Curr Neurol Neurosci Rep 15:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bede P et al (2013) Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): a neuroimaging study of ALS motor phenotype heterogeneity and cortical focality. J Neurol Neurosurg Psychiatry 84:766–773

    Article  PubMed  Google Scholar 

  67. Menke RA et al (2014) Widespread grey matter pathology dominates the longitudinal cerebral MRI and clinical landscape of amyotrophic lateral sclerosis. Brain 137:2546–2555

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tan, R.H., et al. (2014) Cerebellar integrity in the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS One 9, e105632

    Google Scholar 

  69. Zurcher NR et al (2015) Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28. NeuroImage Clin 7:409–414

    Article  PubMed  PubMed Central  Google Scholar 

  70. Turner MR et al (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15:601–609

    Article  CAS  PubMed  Google Scholar 

  71. Lloyd CM et al (2000) Extramotor involvement in ALS: PET studies with the GABA(A) ligand [(11)C]flumazenil. Brain J Neurol 123(Pt 11):2289–2296

    Article  Google Scholar 

  72. Lanctot KL et al (2007) Serotonin-1A receptors in frontotemporal dementia compared with controls. Psychiatry Res 156:247–250

    Article  CAS  PubMed  Google Scholar 

  73. Turner MR et al (2005) [11C]-WAY100635 PET demonstrates marked 5-HT1A receptor changes in sporadic ALS. Brain J Neurol 128:896–905

    Article  CAS  Google Scholar 

  74. Appel SH et al (1988) A double-blind study of the effectiveness of cyclosporine in amyotrophic lateral sclerosis. Arch Neurol 45:381–386

    Article  CAS  PubMed  Google Scholar 

  75. Eisen A, Stewart H, Schulzer M, Cameron D (1993) Anti-glutamate therapy in amyotrophic lateral sclerosis: a trial using lamotrigine. Can J Neurol Sci 20:297–301

    Article  CAS  PubMed  Google Scholar 

  76. Drachman DB et al (1994) Trial of immunosuppression in amyotrophic lateral sclerosis using total lymphoid irradiation [see comments]. Ann Neurol 35:142–150

    Article  CAS  PubMed  Google Scholar 

  77. Smith SA, Miller RG, Murphy JR, Ringel SP (1994) Treatment of ALS with high dose pulse cyclophosphamide. J Neurol Sci 124 Suppl:84–87

    Article  CAS  PubMed  Google Scholar 

  78. Louwerse ES, Weverling GJ, Bossuyt PM, Meyjes FE, de Jong JM (1995) Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic lateral sclerosis. Arch Neurol 52:559–564

    Article  CAS  PubMed  Google Scholar 

  79. Miller RG et al (1996) A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis. Ann Neurol 39:256–260

    Article  CAS  PubMed  Google Scholar 

  80. Miller RG et al (1996) A clinical trial of verapamil in amyotrophic lateral sclerosis. Muscle Nerve 19:511–515

    Article  CAS  PubMed  Google Scholar 

  81. Miller, R. G. et al. Controlled trial of nimodipine in amyotrophic lateral sclerosis. Neuromuscul Disord 6, 101-104 (1996).

    Google Scholar 

  82. Lai EC et al (1997) Effect of recombinant human insulin-like growth factor-I on progression of ALS—A placebo-controlled study. Neurology 49:1621–1630

    Article  CAS  PubMed  Google Scholar 

  83. Borasio GD et al (1998) A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. European ALS/IGF-I Study Group. Neurology 51:583–586

    Article  CAS  PubMed  Google Scholar 

  84. Sorenson EJ et al (2008) Subcutaneous IGF-1 is not beneficial in 2-year ALS trial. Neurology 71:1770–1775. doi:10.1212/01.wnl.0000335970.78664.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gredal O et al (1997) A clinical trial of dextromethorphan in amyotrophic lateral sclerosis. Acta Neurol Scand 96:8–13

    Article  CAS  PubMed  Google Scholar 

  86. Chio A, Cucatto A, Terreni AA, Schiffer D (1998) Reduced glutathione in amyotrophic lateral sclerosis: an open, crossover, randomized trial. Ital J Neurol Sci 19:363–366

    Article  CAS  PubMed  Google Scholar 

  87. Kasarskis EJ et al (1999) A controlled trial of recombinant methionyl human BDNF in ALS. Neurology 52:1427–1433

    Article  Google Scholar 

  88. Miller RG et al (1996) A placebo-controlled trial of gabapentin in amyotrophic lateral sclerosis. Neurology 46:A469

    Article  Google Scholar 

  89. Desnuelle C, Dib M, Garrel C, Favier AA (2001) double-blind, placebo-controlled randomized clinical trial of alpha-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS riluzole-tocopherol Study Group. Amyotroph Lateral Scler Other Motor Neuron Disord 2:9–18

    Article  CAS  PubMed  Google Scholar 

  90. Cudkowicz ME et al (2003) A randomized, placebo-controlled trial of topiramate in amyotrophic lateral sclerosis. Neurology 61:456–464

    Article  CAS  PubMed  Google Scholar 

  91. Groeneveld GJ et al (2003) A randomized sequential trial of creatine in amyotrophic lateral sclerosis. Ann Neurol 53:437–445. doi:10.1002/ana.10554

    Article  CAS  PubMed  Google Scholar 

  92. Shefner JM et al (2004) A clinical trial of creatine in ALS. Neurology 63:1656–1661

    Article  CAS  PubMed  Google Scholar 

  93. Meininger V et al (2004) Efficacy and safety of xaliproden in amyotrophic lateral sclerosis: results of two phase III trials. Amyotroph Lateral Scler Other Motor Neuron Disord 5:107–117

    Article  CAS  PubMed  Google Scholar 

  94. Ferrante KL et al (2005) Tolerance of high-dose (3,000 mg/day) coenzyme Q10 in ALS. Neurology 65:1834–1836

    Article  CAS  PubMed  Google Scholar 

  95. Cudkowicz ME et al (2006) Trial of celecoxib in amyotrophic lateral sclerosis. Ann Neurol 60:22–31

    Article  CAS  PubMed  Google Scholar 

  96. Meininger V et al (2006) Pentoxifylline in ALS: a double-blind, randomized, multicenter, placebo-controlled trial. Neurology 66:88–92

    Article  CAS  PubMed  Google Scholar 

  97. Gordon PH et al (2007) Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol 6:1045–1053

    Article  CAS  PubMed  Google Scholar 

  98. Miller R et al (2007) Phase II/III randomized trial of TCH346 in patients with ALS. Neurology 69:776–784

    Article  CAS  PubMed  Google Scholar 

  99. Cudkowicz ME et al (2009) Phase 2 study of sodium phenylbutyrate in ALS. Amyotroph Lateral Scler 10:99–106

    Article  CAS  PubMed  Google Scholar 

  100. Pascuzzi RM et al (2010) A phase II trial of talampanel in subjects with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11:266–271. doi:10.3109/17482960903307805

    Article  CAS  PubMed  Google Scholar 

  101. de Carvalho M et al (2010) A randomized, placebo-controlled trial of memantine for functional disability in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11:456–460. doi:10.3109/17482968.2010.498521

    Article  PubMed  CAS  Google Scholar 

  102. Miller RG et al (2011) Phase II screening trial of lithium carbonate in amyotrophic lateral sclerosis: examining a more efficient trial design. Neurology 77:973–979. doi:10.1212/WNL.0b013e31822dc7a5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Group, U. K.-L. S. et al. (2013) Lithium in patients with amyotrophic lateral sclerosis (LiCALS): a phase 3 multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 12, 339–345, doi:10.1016/S1474-4422(13)70037-1

  104. Cudkowicz ME et al (2013) Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double-blind, phase 3 trial. Lancet Neurol 12:1059–1067. doi:10.1016/S1474-4422(13)70221-7

    Article  CAS  PubMed  Google Scholar 

  105. Cudkowicz ME et al (2014) Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: a multi-stage, randomised, double-blind, placebo-controlled trial. Lancet Neurol 13:1083–1091. doi:10.1016/S1474-4422(14)70222-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Miller RG et al (2015) Randomized phase 2 trial of NP001-a novel immune regulator: safety and early efficacy in ALS. Neurol Neuroimmunol Neuroinflamm 2:e100. doi:10.1212/NXI.0000000000000100

    Article  PubMed  PubMed Central  Google Scholar 

  107. Benatar M (2007) Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol Dis 26:1–13

    Article  CAS  PubMed  Google Scholar 

  108. Rosen DR et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  109. Berry JD, Cudkowicz ME (2011) New considerations in the design of clinical trials for amyotrophic lateral sclerosis. Clin Investig 1:1375–1389

    Article  Google Scholar 

  110. Gurney ME et al (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation [see comments]. Science 264:1772–1775

    Article  CAS  PubMed  Google Scholar 

  111. Reddy LV, Miller TM (2015) RNA-targeted therapeutics for ALS. Neurotherapeutics 12:424–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kole R et al (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11:125–140

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Smith RA et al (2006) Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest 116:2290–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Miller TM et al (2013) An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 12:435–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Richard JP, Maragakis NJ (2015) Induced pluripotent stem cells from ALS patients for disease modeling. Brain Res 1607:15–25

    Article  CAS  PubMed  Google Scholar 

  116. Glass JD et al (2012) Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells 30:1144–1151

    Article  CAS  PubMed  Google Scholar 

  117. Feldman EL et al (2014) Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase 1 trial outcomes. Ann Neurol 75:363–373

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lepore, A.C., et al. (2011) Human glial-restricted progenitor transplantation into cervical spinal cord of the SOD1 mouse model of ALS. PLoS One 6, e25968

    Google Scholar 

  119. Karussis D et al (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67:1187–1194

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Maragakis M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ilieva, H., Maragakis, N.J. (2017). Motoneuron Disease: Clinical. In: Beart, P., Robinson, M., Rattray, M., Maragakis, N. (eds) Neurodegenerative Diseases. Advances in Neurobiology, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-57193-5_7

Download citation

Publish with us

Policies and ethics